top of page

Tuesday

Tuesday

Session: UQ Software and Tutorials
(Chair: L. Seelinger)

09.00 - 10.00

Introduction to UM-Bridge and Software-Tools

10.00 - 10.30

UQ Problem used for Tutorials

Software Tutorial 1

11.00 - 12.00

N. Lüthen: Uncertainty Quantification with UQLab and UM-Bridge

Software Tutorial 2

13.00 - 14.00

C. Piazzola:  The Sparse Grids Matlab Kit

Software Tutorial 3

14.30 - 15.30

S. Dolgov:  TT Toolbox

Software Tutorial 4

16.00 - 17.00

C. Krill:  UQpy 4.2: Scientific Machine Learning

Wednesday

Wednesday

Keynote I

08.30 - 09.30

J. Schaefer:  Industry Perspective on UQ to Enable High-Fidelity Predictive Modeling for Aerospace Design and Analysis

Session I: UQ for Certification by Analysis & Digital Twins
(Chair: P. Bekemeyer)

10.00 - 10.30

D. Di Francesco: Towards risk-optimal certification by analysis

10.30 - 11.00

P. van Gils:  Towards Trustworthy Neural Networks for Certification by Analysis - Fuel Tank Flammability Reduction System

11.00 - 11.30

J. Unger:  Uncertainty Quantification and Model Extension for Digital Twins through Model Bias Identification

11.30 - 12.00

D. Valente:  Provenance-Driven Framework for Robust Aerospace System Performance

Keynote II 

13.00 - 14.00

R. Tempone: TBA

Session II: Math for UQ I (Chair: S. Krumscheid)

14.00 - 14.30

T. Zhou: Information bottleneck based uncertainty quantification

14.30 - 15.00

J. Dölz: On uncertainty quantification of eigenvalues and eigenspaces with higher multiplicity

15.00 - 15.30

B. Kent: Adaptive-in-time stochastic collocation approximation for parametric parabolic PDEs

Session III: Design under Uncertainties (Chair: U. Römer)

16.00 - 16.30

J. Parekh: Identification and Handling of Uncertainties in Computational Aerodynamics

16.30 - 17.00

S. Baars: Thompson sampling and partitioned surrogates for multidisciplinary design optimization

17.00 - 17.30

M. Adler: Probabilistic Technology Assessment of Complex Transportation Systems

Thursday

Thursday

Keynote III

08.30 - 09.30

R. Dwight: Statistical methods for generalizable data-driven turbulence modelling

Session IV: Forward Propagation of Uncertainties
(Chair: L. Seelinger)

10.00 - 10.30

F. Lößle: Uncertainty Quantification in Aircraft Noise Calculation: Current Status and Challenges at DLR

10.30 - 11.00

H. Geisler: A new paradigm for engineering simulations under uncertainties: Time-separated Stochastic Mechanics

11.00 - 11.30

J. Bachner: Uncertainty Propagation for Multi-Hole Pneumatic Probes in Turbomachinery Flows

11.30 - 12.00

M. Pollak: Surrogate Modeling for Analysis and Design of Hollow Fiber Membrane Humidifiers for PEM Fuel Cells

Keynote IV

13.00 - 14.00

E. Ullmann: Rare event estimation with PDE-based models

Session V: Math for UQ II (Chair: S. Krumscheid)

14.00 - 14.30

E. Lovbak: Markov Chain Monte Carlo for Particle Solvers

14.30 - 15.00

P. Hristov: Backcalculation for design under general uncertainty: An introduction and a tutorial

15.00 - 15.30

K. Tüting: A modeling perspective on tracing uncertainties in dynamic systems

Session VI: State Estimation and Monitoring under Uncertainties (Chair: U. Römer)

16.00 - 16.30

D. Pölzleitner: Feature and Extrapolation Aware Uncertainty Quantification for AI-based State Estimation

16.30 - 17.00

V. Narouie: Polynomial Chaos-based Statistical Finite Element Analysis with Non-Conjugate Prior

17.00 - 17.30

D. Tyagi: Damage Localisation and Quantification from Modal Data using Sparsity Promoting Priors

Friday

Friday

Keynote V

08.30 - 09.30

R. Butler: Certification for Design: Re-shaping the Testing Pyramid for Composite Aerostructures

Keynote VI

09.30 - 10.30

B. Rosic: Stochastic modelling of composite material anisotropy and surrogate modelling

Session VII: Surrogate Modeling for UQ (Chair: P. Bekemeyer)

11.00 - 11.30

N. Didri: Uncertainty Quantification Using Bayesian Neural Networks

11.30 - 12.00

F. Zacchei: Multi-Fidelity Delayed Acceptance for PDE Inverse Problems with Progressive Neural Network Surrogates

12.00 - 12.30

D. Anton: Statistical calibration of constitutive models from full-field data using physics-informed neural networks

bottom of page